Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles.
نویسنده
چکیده
In this work, the synthesis, characterization, and applications of branched oligothiophene dendrons that act as electroactive surfactants for the capping of Au metal nanoparticles and CdSe quantum dots are described. Two distinct methods have been employed for synthesis: a ligand exchange process and a direct-capping synthesis approach. The coverage of the dendrons per nanocrystal, the nature of the surface coordination interactions, and energy transfer interactions were studied in detail using UV-vis absorbance, FT-IR, AFM, TEM, and photoluminescence spectroscopy. The competition/displacement in ligand metathesis is highlighted by the size of the dendron and nature of binding on semiconductor nanocrystals. In the other system using the direct capping method, the size of the Au nanoparticle is mediated by the dimensions of the ligand, i.e. alkyl chain spacer and dendron branching or size. These hybrid dendron/nanoparticle complexes are generally very soluble and stable in non-polar solvents. They exhibit energy transfer, surface plasmon resonance effects, and photoinduced charge transfer interactions between the metal/semiconductor and conjugated ligands. Adsorption on mica and graphite surfaces was observed. A one-layer photovoltaic cell was fabricated to demonstrate the potential for device applications.
منابع مشابه
Conductive Polythiophene Nanoparticles Deposition on Transparent PET Substrates: Effect of Modification with Hybrid Organic-inorganic Coating (RESEARCH NOTE)
In this work, Poly(ethyleneterephthalate) (PET) substrate was treated using KOH solution and was modified using hybrid O-I coating containing PCL )polycaprolactone( as organic phase and TEOS )tetraethoxysilane( as inorganic phase. The coating was prepared through a sol-gel process and applied on the surface by dip coater. Then, electrically conducting polythiophene (PTh) nanoparticles were depo...
متن کاملOrganic-inorganic hybrid nanomaterials prepared from 4- formyl benzo-12-crown-4-ether and silica coated magnetite nanoparticles
Silica coated magnetite nanoparticles were covalent grafted with 3-aminopropyl trimethoxysilane to give APTSCMNPs. Reaction of the resulted nanomaterial with 4-formyl benzo-12-crown-4 ether afforded FB12C4/APTSMNPs nanocomposite material in which the crown ether moiety was attached through propyl chain spacer. Characterization of the prepared nanocomposite was performed wit...
متن کاملInorganic-Organic Hybrid Nanomaterials for Therapeutic and Diagnostic Imaging Applications
Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systemat...
متن کاملGraphite and Hybrid Nanomaterials as Lubricant Additives
Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inor...
متن کاملPhotocatalytic Coating Using Titania-Silica Core/Shell Nanoparticles
The photocatalytic coatings were prepared via incorporating the modified titania nanoparticles into epoxy-based inorganic-organic hybrid coatings. Titania nanoparticles were first synthesized from tetra-n-butyl titanate using sol-gel methods by two different calcination treatments, i.e., in mild condition (80°C) and 500°C. The formed anatase nanoparticles were further modified as Titania-Silica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 23 شماره
صفحات -
تاریخ انتشار 2006